北大联合小红书提出Uni-Instruct:ImageNet生图FID进入1.0时代!
近年来,单步扩散模型因其出色的生成性能和极高的推理效率,在图像生成、文本到视频、图像编辑等领域大放异彩。目前主流的训练方法是通过知识蒸馏,最小化学生模型与教师扩散模型之间的分布差异。然而,现有的方法主要集中在两条平行的理论技术路线上:
近年来,单步扩散模型因其出色的生成性能和极高的推理效率,在图像生成、文本到视频、图像编辑等领域大放异彩。目前主流的训练方法是通过知识蒸馏,最小化学生模型与教师扩散模型之间的分布差异。然而,现有的方法主要集中在两条平行的理论技术路线上:
近年来,单步扩散模型因其出色的生成性能和极高的推理效率,在图像生成、文本到视频、图像编辑等领域大放异彩。目前主流的训练方法是通过知识蒸馏,最小化学生模型与教师扩散模型之间的分布差异。然而,现有的方法主要集中在两条平行的理论技术路线上:
neurips fid 单步 imagenet单步 imag 2025-10-28 14:29 3
在人们都认为疯狂砸钱,拼命地把大语言模型的参数规模往上堆的Scaling Law已经到头了的时候。一篇叫《递减收益的错觉:衡量LLMs中的长时程执行能力》的论文又给大家来了一剂“强心针”。
真Meta Superintelligence Labs新作来了!LLM学会「自我改进」:只做单步训练,推理却能多步迭代。在数学、工具调用、多轮任务到MLE-bench上,ExIt持续拔高模型表现,其中MLE-bench相对GRPO提升约22%。